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Introduction
Cerebral palsy (CP) is a static lesion occurring in the 
immature brain, which may occur as a developmental 
defect such as lissencephaly, as an infraction such as 
a middle cerebral artery occlusion in a neonate, or 
as trauma during or after delivery. Th e lesion leaves 
children with a permanent motor impairment [1]. Th e 
lesion is attributed to nonprogressive disturbances that 
occurred in the developing fetal or infant brain; prenatal 
events are thought to be responsible  for about 75% of 
all CP cases [2], and 10  to 18% of CP is thought to be 
caused postnatal [3].

Th e predominant types of motor impairment of CP 
are spastic, dyskinetic, and ataxic [4,5]. Approximately, 
70 to 80% of children with CP are spastic,  which is 
anatomically distributed into three types: hemiplegia, 
diplegia, and quadriplegia [6,7]. Spastic diplegia  is the 
most prevalent type of CP, which accounts for about 
44% and may account for 50% of the total incidence 
of CP [8,9].

Walking patterns of diplegic CP children are 
established at ∼5 to 7 years of age and they change with 

age. Th e common problems in the stance phase of gait 
pattern are equinovarus, jump knee, crouch knee, and 
internal rotation of the legs, whereas shortened step 
length and impaired foot clearance are the common 
problems in the swing phase [9]. Th ese problems occur 
at the sagittal plane, which may coexist with frontal and 
transverse pathologies [10]. A child with CP may walk 
with excessive frontal plane sway (trunk lunching gait), 
which is an increase in the side-to-side movement of 
the trunk during walking [9]. It is caused by defi ciency 
of balance and it may represent compensation for 
reduction in the distal degree of freedom [11].

Visual cognition is an ability to manipulate and 
integrate visual inputs with other sensory information 
to gain knowledge, solve problems, formulate plans, and 
make decisions [12]. Th e visual cognition considered 
as highest order in a hierarchical model of visual 
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perceptual process, which consists of visual cognition, 
visual memory, pattern recognition, visual scanning, 
and visual attention (visual acuity, visual fi eld, and 
oculomotor control). Th erefore, the visual cognitive 
processing cannot occur without visual  attention – that 
is, the ability of the central nervous system to receive 
clear, concise visual input from the environment 
through the visual functions of oculomotor control, 
visual fi elds, and visual acuity [13].

Simultaneous using of cognitive task and motor task 
is defi ned as a dual-task condition which requires high 
attention, therefore attention divided into two tasks 
[14,15]. Th e attentional requirements of balancing of a 
CP child when performing a task, while simultaneously 
performing a second cognitive task cause reduced 
attention to balance control and an increased risk for 
falls [16]. Th us, the aim of this study was to evaluate the 
concurrent use of visual cognitive task and gait training 
task on gait in children with spastic diplegic CP.

Participants and methods
Th is study  was conducted on 15 spastic diplegic CP 
children (nine boys and six girls). Th ey were selected 
from the outpatient clinic, Faculty of Physical 
Th erapy, Cairo University. Children with a mean age 
of 8.15 ± 1.21 years [17–19], a degree of spasticity of 
2 according to the modifi ed Ashworth scale [20], and 
level II of the Gross Motor Function Classifi cation 
System [21] were included in the study. Th ey had trunk 
lurching gait pattern, intelligence quotient not less 
than 85 on Stanford Binet as referred by a psychologist, 
and the ability to see, hear and communicate, whereas 
children with fi xed deformities in the ankle or knee 
joints were excluded from the study. Parents of 
children with selected criteria were asked to sign an 
informed consent form approved  by the Committee on 
the Protection of the Rights of Human Subjects at the 
Faculty of Physical Th erapy.

Th e children received selected physical therapy program 
for 1 h, in addition to gait training with concurrent 
visual cognitive task for another 1 h. Th e treatment 
was conducted three times per week for 3 successive 
months. Trunk lurching angle from the frontal plane 
during walking and kinematic gait parameters (spatial 
and temporal) were measured using the prorefl ex 
system before and after treatment procedures.

Assessment procedures
Th e trunk lurching and gait parameters were measured 
with the prorefl ex system, which consists of six cameras 
acting as three-dimensional cameras; it was calibrated 

using a wand-kit, moving it in three planes, the X, Z, 
and Y planes, to assure accuracy of the values obtained 
by viewing the dots on three cameras on each side. Th e 
refl ected dots were put bilateral on both sides on the 
anterior superior iliac spines, lateral malleolus , the base 
of fi fth metatarsal bones, and sternal notch, for every 
child.

Each child was asked to walk from the end of a 
wooden walkway to its other end far enough from the 
measurement area to enable the child to take a natural 
walking pattern without any interference to his or her 
gait pattern, but care was taken to keep him or her 
from falling. Th e gait cycles were captured within the 
measuring area (complete cycle starts from initial contact 
of one leg to terminal swing of the same leg), selectively 
entered into the Q tools software and then imported 
into the TSV fi le to be saved and analyzed. Th e data 
displayed from the prorefl ex system are as follows:

(1) Th e peak angle of trunk deviation (peak-to-peak 
angle in degrees), which is the summation of the 
angle of maximum deviation of the trunk to the 
right side with the angle of maximum deviation to 
the left side. Th is angle is considered as amount of 
trunk lurching [22].

(2) Kinematic gait parameters (spatial and temporal): 
Spatial parameters are velocity and stride length, 
and temporal parameters are percentage of swing 
time, percentage of stance time, and cadence [14].

Treatment procedures
(1) Th e physical therapy program included gait 

training, start with side way walking, then forward 
walking, and end by backward walking, also 
increase diffi  culty of each exercise by using stepper, 
obstacles of diff erent sizes and up and down stairs 
of diff erent heights, and balance exercise applied 
by using wooden and soft ramps, balance board, 
and balance beam.

(2) Visual cognition task.

Selection of pictures
About 204 pictures were selected, which were familiar to 
normally developed children to be identifi ed and named 
at this age. Th ese pictures were grouped into six groups 
as follows: group 1 included 38 pictures of foodstuff s 
such as fruits, vegetables, and sandwich; group  2 
included 44 pictures of animals and plants; group 3 
included 26 pictures of means of transportation; group 
4 included 36 pictures of clothes; group 5 included 20 
pictures of furniture; and group 6 included 40 pictures 
of tools used in home, or in the school [14]. Each  child 
was fi rst seated on a comfortable chair in front of the 
laptop to identify and name all pictures.
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Time of picture rotation
Pictures were changed at a rate of one picture every 
3 s, which was calculated using a stop watch [23]. 
Moreover, we conducted a pilot study to ensure the 
time taken to name each picture.

Picture presentation
Th e pictures were presented on Microsoft Power Point 
slide 2010 United States on full screen by choosing slide 
show tool on the laptop, with the height of the tripod at 
the level of the child’s eyes using the height scale.

The task during gait training

Th e child was asked to stand at the end of the walkway 
6 m away from the laptop. Children were instructed to 
walk directly forward without stopping and without 
deviation and concentrate on the pictures in front of 
them and say its name clearly. Verbal guidance was used 
to prevent the child from falling and also to reward for 
the accurate answer as very good, excellent, or  that is well. 
Th e training was carried out for 1 h per time, three times 
per week, for 3 successive months. Th e pictures were 
selected from groups and changed after two or three 
times of training to keep the interest of the child well.

Th e pretreatment and post treatment mean values of 
gait parameters (spatial and temporal), and the trunk 
lurching angle were measured and compared by using 
unpaired t test. Statistical Package for Social Sciences 
(SPSS) computer program (version 19 windows) was 
used for data analysis. P value ≤ 0.05 was considered 
signifi cant.

Results
Th e post treatment mean values of trunk lurching angle 
(the peak angle of trunk deviation) decreased to 21.8 ± 
7.23° degrees with mean diff erence about 18.53° which 
was statistically signifi cant (P < 0.001) (Table 1).

Gait parameters
On comparing the post-treatment mean values of 
velocity (1.07 ± 0.17 m/min), percentage of stance time 
(69.21 ± 7.04% of time of total gait cycle), and cadence 
(75.36 ± 16.61 steps/min) to the pretreatment mean 
values (1.14 ± 0.21 m/min, 84 ± 5.07% of time of total 
gait cycle, and 79.07 ± 14.85 steps/min, respectively), 
there was a decrease with signifi cant diff erences 
(P < 0.05*), whereas there was an increase in the post-
treatment mean values of stride length (61.00 ± 12.29 
cm) and percentage of swing time (31.05 ± 6.8%), with 
signifi cant diff erences (P < 0.05*) when compared 
with the pretreatment mean values, which were 
46.86 ± 120.61 cm and 15.57 ± 5.23%, respectively 
(Table 2).

Discussion
Children in this study used visual cognitive task 
concurrently during gait training as a rehabilitation 
program adjunct with physical therapy program. Th e 
results showed decrease in the angle of lateral trunk 
lurching (deviation of trunk laterally) and change in 
gait parameters after training for 3 months. In visual 
cognitive task, interesting and motivating pictures 

 Table 2 Comparison between pretreatment and post-treatment mean values of kinematic gait parameters

Gait parameters Time of test Sample size Mean ± SD Mean difference t-Value P-value (<0.05)

Spatial

Velocity (m/min) Pretreatment 15 1.14 ± 0.21 0.07 2.95 *

Post-treatment 15 1.07 ± 0.17

Stride length (cm) Pretreatment 15 46.86 ± 120.61 14.14 12.03 *

Post-treatment 15 61.00 ± 12.29

Temporal

Stance time % Pretreatment 15 84 ± 5.07 −14.79 19.72 *

Post-treatment 15 69.21 ± 7.04

Swing time % Pretreatment 15 15.57 ± 5.23 15.93 11.78 *

Post-treatment 15 31.05 ± 6.8

Cadence (steps/min) Pretreatment 15 79.07 ± 14.85 3.71 2.45 *

Post-treatment 15 75.36 ± 16.61

*Signifi cant.

Table 1 Comparison between pretreatment and post-treatment mean values of peak-to-peak angle of lateral trunk deviation

Time of test Sample size Mean ± SD (deg.) Mean difference t-Value P-value (<0.05) Percentage of 
improvement

Pretreatment 15 40.33 ± 12.34° 18.53° 6.8 * 45.94%

Post-treatment 15 21.8 ± 7.23°

*Signifi cant.
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were used for the children to identify and name during 
the gait training program, which increased the level 
of complexity of cognitive tasks by increasing sensory 
information at the tasks (visual and proprioception) 
and by dividing attention between two tasks (visual  task 
and postural control during walking). After training, it 
was found that lateral trunk lurching angle decreased 
which might increase postural control, because the 
child used attention in its two levels: a voluntary level 
(directed by the cortex), which focuses on decreasing 
body sway, and an automatic or refl exive level 
(controlled by brain stem), which focuses on pictures 
appearing in the peripheral visual fi eld. Th ese results 
were supported by Sethi and Raja [24], Marshall et al. 
[25], and Bensoussan et al. [26], who m entioned that 
when the task places a greater diffi  culty on a child, it is 
eff ective in improving balance and functional recovery 
and that interactions between cognitive function and 
motor behaviors improve attention with training, 
which could aff ect balance.

Th e trunk lurching angle (body sway) decreased by 
18.53° in post training program with using visual 
cognitive task during walking (Table 1). It was found 
that the visual feedback information is primarily used 
to control balance in the laterolateral direction, as the 
visual system provides information not only about the 
target distance and presence of obstacles but also about 
maintaining balance during walking and adjusting 
trajectories when an obstacle appears or if the target is 
shifted [27–29]. Th is agreed with the opinion of Levitt 
[30], who stated that the most treatment programs 
use more aff erent stimuli of visual, auditory, and 
proprioceptive stimuli with various methods intended 
for reduction of abnormal postural alignments and 
stimulate normal movement pattern.

Moreover, improvement of good alignment of the trunk 
after gait training using visual task may be due to use 
visual gaze on the fi xed picture in front of the child’s 
sight, that also concluded by Cromwell et al. [31], that 
gaze stabilization was expected to gradually facilitate 
head and trunk vertical alignment as stationary visual 
information has a stabilizing eff ect on posture. Th ere is 
a reciprocal relationship between head–trunk stability 
and gaze stability. Th is vertical alignment of the trunk 
facilitates the vestibular system, which sends motor 
control signals through the nervous system to the 
muscles of the eyes with the vestibule-ocular refl ex. Th e 
vestibule-ocular refl ex is responsible for maintaining 
stability of the image on the center (fovea) of the retina 
during rapid head movement. Th is enables the eyes to 
remain fi xed in pace (gaze stability) during functional 
task and so gaze stabilization exercise, which utilizes the 
focal vision, is commonly used to rehabilitate patients 
with postural imbalance and vice versa [32–34].

Th e parameters of gait changed after training using visual 
cognition, as interference of attention divided between 
the two tasks, leading to decrease in the post-treatment 
mean value of velocity compared with pretreatment 
mean values when walkin g at 0.07 m/min. Th is may 
have an impact on trunk stability, as the body can be 
displaced with a proper speed, keeping it more constant 
as possible for the conservation of momentum and 
minimizing upper body oscillations and hence the risk 
of fall [35,36]. Slow gait velocity that occurred in post 
treatment gait pattern, it might provide greater stability 
by decreasing trunk sway and increasing percentage of 
stance time (i.e: time at which the both feet are on the 
ground simultaneously) [37]. Th e improvement in the 
percentage of stance time and swing time might be due 
to the improvement of trunk stability, which is essential 
to the control of walking [38].

Training improves the ability of the child to direct 
attention selectively, which is one of the most important 
things that is emphasized by established motor learning 
theories and strategies. Introduction of early distraction 
to visual task other than the motor task may improve 
children’s ability to deal with irrelevant information, 
and gives the children a chance to develop strategies 
for selective attention that can be learned at the real-
world environment. In the study, the children acquired 
ability to direct their attention towards the cognitive 
recourses while the attention required for planning 
and performing of the motor task was decreased, and 
they were able to process and interpret the diff erent 
feedback information including those pertaining to 
their performance and make an adequate corrective 
response, improving the effi  ciency of feedback [39,40]. 
In addition, the concurrent use of cognitive and motor 
tasks at the same time (dual-tasks) decrease gait velocity, 
which in itself is associated with a decrease in body sway. 
Th e slowing of the gait is to reduce the risk of falling 
in more diffi  cult circumstances to p erform a dual task 
[40]. Eff ects of concurrent cognitive tasks on locomotor 
performance in children can lead to larger steps when 
walking under dual task conditions; this improvement 
may be due to increased attention to step length as child 
attempts to reach to the pictures without falling [41].

Th e results of this study contradicted with those of Brauer 
et al. [42], who revealed that when the children with spastic 
CP performed two tasks simultaneously, it appeared that 
they directed their attentional resources primarily to the 
performance of the cognitive task, resulting in a decrement 
in the secondary task of postural control.

Limitations of the study
Th e sample size in the study was small due to limited 
inclusive criteria of selected children, and the study 



180 Bulletin of Faculty of Physical Therapy

was limited to children who were unable to identify a 
picture for three trials.

Conclusion
When visual cognitive task was used concurrently with 
gait training for 3 successive months, lateral trunk lurching 
(body sway) decreased and stride length and stance time 
% increased, whereas velocity and cadence during walking 
decreased in children with spastic diplegic CP. Th erefore, 
the concurrent use of visual cognition with gait training 
could increase postural control on trunk and lower limbs.
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