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Background

Lumbosacral radiculopathy (LR) is strongly associated with delayed recovery and
persistent disability. Chronic LR may lead to somatosensory system impairment,
resulting in decline of postural balance.

Purpose

The aim of the study was to investigate static and dynamic postural balance
alterations in individuals with LR owing to lumbar disc herniation.

Participants and methods

In this case—control study design, 12 patients presenting with unilateral LR were
included, whereas 12 normal individuals were randomly selected for control. Static
balance was assessed functionally using Functional Reach Test. Dynamic balance
was assessed via Biodex Balance System, where postural stability indices and the
dynamic limits of stability were evaluated. Dynamic limits of stability parameters
were expressed as direction control and time required to complete the test.
Results

There was significant reduction of mean values of Functional Reach Test in LR
group (P<0.0001) when compared with the control. In addition, there was a
significant increase of the mean values of overall stability index (P<0.0001) and
postural stability indices (P<0.0002) and a significant decrease of the mean values
of direction control (P<0.0001) in the LR group.

Conclusion

Patients with chronic LR have shown to have limited functional abilities and
decreased postural balance both statically and dynamically when compared with
normal individuals.
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Introduction

Low back pain (LBP) combined with leg pain is a
common complaint, although the pain duration is
usually self-limited, with a favorable prognosis up to
90% of LBP cases within 6 weeks [1]. The prevalence
of lumbosacral radiculopathy (LR) is roughly 3-5%;
however, the association of adjacent lumbosacral nerve
roots producing neural dysfunction and pain is more
resistant to conservative treatment than LBP alone
[2,3]. The most common cause for LR is a
herniated disc impinging or irritating a nerve root
[4]. The most frequently affected intervertebral discs
are L4-L5 and L5-S1, leading to L5 or S1
radiculopathies, also referred to as sciatica [5]. The
clinical presentation of LR is described by most
patients as sharp, dull, piercing, throbbing, stabbing,
shooting, or burning pain and paresthesias in the
involved dermatome [6,7]. Neurological findings of
nerve root entrapment include sensory deficits, reflex
changes, and/or muscle weakness. Radicular pain may
last for more than 3 months in 25% of patients [8];
however, the consequences are disability, reduced

quality of health, and reduced working capability [9].
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Postural control and balance are essential attributes in
activates of daily living. Visual, vestibular, and
somatosensory systems transmit their input to the
central nervous system (CNS), resulting in the most
optimal muscle forces and body reactions to maintain
the center of mass (COM) within the support base,
hence executing adequate postural balance [10].
Numerous uncontrollable factors may promote to
the decline of postural balance such as reduced
sensory-motor system performance with aging and
neurological or disorders [11].
Chronic impairment of proprioceptors in the lumbar
spine, trunk, or lower extremities may affect postural
balance [12]. Deterioration of this proprioceptive
information from these areas may be the influential

musculoskeletal

factor in reducing the precision in the sensory
integration process [13].
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Recent consistent evidence suggests that LBP accounts
for the increased postural sway amplitude and/or sway
velocity [14]. Few studies exist that describe the
characteristics and clinical course of long-term LR,
i.e., for more than 3 months, on postural control
[15,16]. Most studies emphasize on patients with
back pain alone, mixed populations with back and
leg pain (without differentiating between them), or
are involved with describing the characteristics of
highly selected populations including postoperative
candidates [10,13-16]. As postural balance is
controlled by sensory information, central processing,
and neuromuscular responses, any alterations in
proprioception,  asymmetrical load of lower
extremities, distorted muscle activation timing,
sequencing, and asymmetry in foot pressure owing
to long-term radicular pain may alter postural
balance in individuals with LR [12,13,15,16].
Robust evidence concerning the long-term effects of
LR on postural balance is lacking and needs to be
addressed in individuals with lumbar disc herniation
(LDH). Hence, the aim of this study was to investigate
if chronic LR (>3 months) is associated with an altered
performance in static and dynamic postural balance.

Participants and methods

Trial design and sample

A case—control trial design was carried out at the Balance
Laboratory of the School of Physical Therapy, Cairo
University, Giza, Egypt, from July 2017 to October
2017. A convenient sample of 24 participants, with
age ranging from 35 to 55 years, was included in this
study. Investigative group consisted of 12 participants
with LR, with six men and sixwomen, who were selected
from the outpatient clinic of the School of Physical
Therapy at Cairo University. Participants were about
to undergo physical therapy sessions for their condition.
Inclusion criteria consisted of the following: (i) LDH
confirmed by a lumbosacral MRI at L4-L5 and/or
L5-S1 levels; (ii) experienced LR that lasted more
than 3 months; (iii) a positive straight leg raising with
induced symptoms; (iv) a score of 5 or more on the visual
analogscale; and (v) a BMI ranging from 18.5 to less than
30. Participants were excluded if they had the following:
(i) history of cerebral concussions and orthopedic or
vestibular disorders; (ii) any neurological deficit
affecting balance; (iii) history of spine surgery; (iv)
pregnancy; (v) alcoholics or the consumption of
alcohol 24h before the evaluation; (vi) visual acuity
impairment; and (vii) physical therapy interventions in
the past 3 months. The control group consisted of 12
normal individuals (have not experienced LBP for >3
months before the study). They were selected from the

employees working at the School of Physical Therapy,

Cairo University.

All participants, in both groups, underwent an
evaluative procedure to test static [maximum anterior
distance (MAD)] and dynamic [postural stability
indices (PSIs) and dynamic limits of stability
(DLOS)] balance control. They provided written
informed consent to participate in the study. The
Board Council of Higher Education of the School
of Physical Therapy, the Institutional Review Board
of Higher Education and Research of Cairo University,
and the Supreme Council of Universities at Egypt
approved the study.

Test methods and measurement outcome

Functional static balance control assessment

Functional Reach Test was carried out for all
participants. It has demonstrated high intrarater
reliability of 0.97 and an inter-rater reliability of
0.99 in various adult populations [17-19]. With a
yardstick mounted on a wall at shoulder height, and
the participant in standing position next to the
yardstick, but not touching it, the participant was
instructed to flex their shoulder to 90° and fist their
hand. This starting position was documented by
determining which metacarpophalangeal joint lined
up with on the yardstick. Afterward, the participant
was instructed to reach as far forward as possible in a
plane parallel with the yardstick, without taking a step
nor touching the wall. This was considered the end
position with the metacarpophalangeal joint against
the ruler. The difference between the starting and
ending position was documented and was considered
the MAD (inches). A score less than 6 inches showed
limited functional static balance. Three successive
measurements were recorded, and the mean was
used in the analysis.

Dynamic balance control assessment

Biodex Balance System (Biodex Medical Systems Inc.,
Shirley, New York, USA) was used to assess both PSIs
and DLOS. Biodex Balance System has demonstrated
high reliability for evaluating dynamic postural balance
in healthy people [20-24], in blind people [25], as well as
rheumatoid arthritis [26] and ankle instability [27]. The
system comprises eight stability levels, with level 8 the
most stable and 1 the least stable [28,29]. It also consists
of'a movable balance foot platform providing up to 20° of
surface tilt in a 360° range of motion. The platform
includes a foot grid illustration to determine the optimal
foot position, allowing consistency in each trial in
positioning the vertical ground reaction forces as well
as the centre of gravity in each test trial. The platform is



connected to computer software that automatically
calculates the measurement outcomes [29].

The PSI measurement outcome consisted of anterior—
posterior stability index (APSI), mediolateral stability
index (MLSI), and the overall stability index (OSI).
These measures calculate the amount of deviation and
displacement (°) of the platform from the baseline
position [26]. The higher the scores, the increased
motion from baseline level, the higher the sway, and
the poorer the balance [29]. With the participant
standing barefoot on the platform holding onto the
support handle, its height was adjusted accordingly.
With eyes open, the participant was instructed to
maintain his/her foot in a centered position on the
platform by using the foot angles and coordinates on
the platform grid. The participant’s weight, height, and
age were then logged into the device. The platform
stability level was set at five (moderate) [30], and test
duration was set for 30s [29]. As the test proceeded, the
participant was instructed to release the device handle and
maintain a levelled platform by means of sustaining a
cursor centered on a bull’s eye located on the screen grid
through visual feedback. The start key was then engaged
in the control panel to unlock the platform (which took
five seconds to actually start), and an auditory alarm
beeped just before the test proceeded. Two test trials
were executed before the specific trial outcome was
recorded for the purpose of instrumentation familiarity
before data collection. At the end of each test trial, a

printout report was obtained documenting OSI, APSI,
and MLSI.

The
direction of control (DC) and the time required for
completing the test. This represented the motor
control skills, where the lower DC scores and
prolonged time to complete the test indicated
impaired dynamic balance [24,28,30]. The parti-
cipants were once again centered on the platform as
the pervious test; however, the stability level of the
platform was set to level seven [31]. Here the
participant was instructed to shift and move the cursor
over a target box located on the screen. This cursor was
sustained over the target box for a minimum of 0.5 s and
then returned back to the center target. Little deviation
and quick movement were needed before the next target
box emerged. This was achieved by un-leveling the
platform to reach the target box. The test ended when
eight target boxes were completed, and the cursor was
repositioned in the central box. Touching the device
handle was permitted to avoid falling but grasping it was
not allowed. When the test was completed, the DC (%)

and time (s) were recorded and printed out. To minimize

DLOS measurement outcome consisted of
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errors from adaptation, a two-minute rest period was
taken between PSIs and DLOS.

Sample size

The sample size was calculated using the G*Power
software, Heinrich Heine University Diisseldorf,
Dusseldorf, Germany (version 3.0.10). Independent
t-test was selected. A pilot study was conducted on
16 participants: eight with LR and eight normal
individuals. Standardized mean difference effect size
(d) of the difference in MAD was calculated (4=1.6).
Considering a power of 0.95, an a level of 0.05, two
groups, and response variables of six, a generated
sample size of at least 12 participants per group was
required.

Data analysis

Statistical analysis was computed using SPSS for
Windows, version 22 (SPSS Inc., Chicago, Illinois,
USA). 5% and independent #-tests were used to describe
the means, SD, and percentages of the participants’
characteristics. Before data analysis, Shapiro-Wilk test
was used to test data normality. A one-way multivariate
analysis of variance was used to compare between LR
group versus the control group. Bonferroni correction
was used to account for multiple analyses of variance.
Thus, level of significance was accepted at P value less

than 0.008 (a/6).

Results

Table 1 lists the general physical characteristics of the 24
participants in this study. There was no significant
difference in the mean values of age, sex, weight,
height, or BMI between both groups (P>0.05). There
was a statistically significant difference in measures of
stability between groups (overall effect with values:
F=22.059 and P<0.0001). The mean (SD) value of
VAS for participant with LR was 7.4 (1.4). Table 2
represents the mean values as it was revealed that there
was a significant decrease in the mean values of MAD in
the LR group. In addition, OSI, APSI, and MLSI had
significant increase in the mean values in the LR group.
Furthermore, DC mean value had a significant decrease,
whereas the mean value of the total time to complete the
test had a significant increase in the LR group.
Regarding between-group comparison, it was revealed
that there was a significant difference between
both groups, with P value less than 0.0001 for all

measurement outcome.

Discussion
The purpose of this study was to investigate the effect
of chronic LR on functional static and dynamic balance
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Table 1 General characteristics of the participants

ltems LR group (mean+SD) Control group (mean+SD) Comparison Significance
t-value P value
Age (years) 47.25+5.61 41.41+6.8 2.292 0.05 NS
Weight (kg) 73.58+5.29 74.5+£12.3 -0.237 0.815 NS
Height (cm) 166.75+4.47 168.41+8.06 -0.626 0.538 NS
BMI (kg/m?) 26.44+2.27 26.13+3.65 0.248 0.806 NS
Sex distribution [n (%)]
Female 7 (58.3) 5(41.7 2°=0.667 0.684 NS
Male 5 (41.7) 7 (58.3)
LR, lumbar radiculopathy.
Table 2 Comparison between groups regarding all test parameters
Measurement outcome Mean+SD Univariate test
LR group Control group F-value P value
MAD 16.91+4.54 37.25+4.28 127.164 0.0001*
PSls
(o]} 5.15+2.2 1.64+0.66 27.849 0.0001*
APSI 4.28+1.88 1.38+0.49 26.461 0.0001*
MLSI 2.85+1.66 1.05+0.57 12.476 0.002*
DLOS
DC 22+11.34 50.75+17.5 22.796 0.0001*
Test time 2.79+1.2 1.25+0.28 17.754 0.0001*

APSI, anterior—posterior stability index; DC, direction control; DLOS, dynamic limits of stability; MAD, maximum anterior distance; MLSI,
mediolateral stability index; OASI, overall stability index; PSI, postural stability index. *a<0.05, significant.

in patients having LDH. When comparing both
groups, a significant decrease in MAD in the LR
group was found when compared with that of the
control indicating limited functional static balance
when trying to reach forward. Postural control and
balance robustness require sensory and motor-
processing strategies along with learned responses
from previous experience and the anticipation of
change [32]. In addition, proprioception has a very
important neurophysiological role in motor control of

postural balance [33].

Static balance was found affected, both in standing
[33-35], as well as in sitting postural conditions in
chronic LBP population [36]. One possible
mechanism is that chronic deterioration and reduced
proprioceptive afference in the lumbar spine, trunk
[37]. or lower extremities [12] may have affected
postural balance. In addition, altered proprioceptive
reweighting owing to chronic LR combined with
inconsistent postural strategies [38] delayed onsets of
both abdominal and back muscles [36], which may
have contributed to the impaired robustness in static
postural tasks. Moreover, greater repositioning errors
in isolated spinal movements were found [37,39], and
also less capacity to upweight proprioceptive feedback
from paraspinal muscles to provide optimal standing
postural control in people with LBP is seen [40,41].
These findings suggest that proprioceptive

impairments at the lumbar spine and lower
extremities may have played an important role in the
deterioration of static postural balance as observed in

our findings.

Frost et al. [15] found a reduction in somatosensory
information from the sole of the foot that may have
contributed to deficits in quiet standing balance control
having LBP with
radiculopathy. These results come in line with the
findings of this study, where MAD was found to be
decreased in individuals with LR. Another possible
mechanism behind static balance alterations in patients
with LR is ‘pain inhibition’ [42]. High-threshold
nociceptive afferent discharge owing to nerve root
compression may interfere with spinal motor
pathways [43] as well as the motor cortex [44]. In
addition, exaggerated pain may cause an increased
presynaptic inhibition of muscle afferents [45]
leading to the central modulation of muscle spindle
proprioception [46], resulting in extended latencies
owing to the reduction in muscle spindle feedback.
These alterations may have led to the decreased muscle
control that resulted in a decreased MAD as found in
our results.

in individuals associated

Besides postural balance in static postures (e.g.
standing and sitting), it was also found that
performance of a dynamic task such as the sit-to-



stance-to-sit movement was affected in patients with
LBP [47]. In this study, when comparing between both
groups, our results revealed OSI, APSI, and MLSI had
significant increases in mean values in the LR group,
indicating poor dynamic postural balance. This can be
explained by the two stages classified during complex
sagittal movements (sit-to-stand) in patients with
LBP: a preliminary phase and a movement phase.
According to Cordo and Gurfinkel [48] during the
preliminary phase, the CNS coordinates the body to
perform movement optimally with the least energy
demands in the next phase [49,50]. It was found
that pelvic movement was essential to transfer the
COM in the preliminary phase [48]. It was also
suggested that patients with LDH may sometimes
present with a forward-bending posture while
walking, owing to radiculopathy that affected the
sagittal balance resulting in tonic contraction of the
surrounding lumbopelvic muscles [51]. This might
explain the increases of mean values of APSI and
OSI found in LR group indicating an increased
motion from baseline level, hence a higher sway and
poorer dynamic balance. Our results come in line with
multiple studies that observed a pronounced
anteroposterior sway with higher ankle stiffness in
patients with LBP [52-54]. They suggested it may
be seen as a compensatory mechanism to enhance
sensory discrimination and thereby compensate for
diminished proprioceptive input from the lumbar
spine and trunk muscles owing to long-term
neurological adaptations and the deterioration of the

feedback loop [54].

Claeys e al. [47] found that individuals with LBP

demonstrated a decreased use of lumbar proprioceptive

inputs and performed the sit-to-stance-to-sit
movement  significantly slower than healthy
individuals. They suggested that this slower

performance of the total task was the result of a
decrease in speed during the preliminary (transition)
stage and not during the focal movement stage, owing
to the switch of direction of the COM of the body in
the opposite direction [47]. These results come in line
with our study, where it was found that individuals with
LR took more time to complete the DLOS test. In
addition, DC mean value had lower scores, indicating
poor dynamic stability. Our results seem to fit the pain
adaptation model well, postulating that pain owing to
radiculopathy reduces activation of agonist muscles and
increases activation of antagonist’s muscles [55]. Such
muscle control change would decrease movement
velocity and range of motion, to prevent mechanical
provocation of pain [55-57].Moreover, our results
come in line with Kuai ez a/. [58] where they found
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that individuals with LDH displayed more muscle
activities and larger intradiscal forces during trunk
flexion and two types of picking up. They concluded
that these changes might be a compensatory response
to relieve pain and improve spinal stability. However,
these further burdened the trunk
musculature, passive soft tissue, and spinal structure

responses

during functional tasks [58]. Another argument has
proposed that the endpoint of chronic pain consists of
structural remodeling processes in the CNS that open
new pathways for nociceptive information and cause
pain to persist over the long term [59]. Taken together,
these data postulate that adaptive changes of the
sensorimotor system [60] and alteration in brain
function may be the mechanisms that underpin the
problem of LR [61,62]. Thus, there are reasons to
believe that these adaptations may lead to the deficits
found in both static and dynamic postural balance in
LR persisting for more than 3 months.

The results of this study may have some clinical
significance. First, the rehabilitation of the pro-
prioceptive deficiencies in the lumbosacral region in
individuals with LDH and LR needs further
attention. Exercises must depend more on back and
lower extremity muscle proprioceptive inputs in static
and dynamic postural conditions. In addition, the
relationship between Iumbopelvic muscles and
complex movements in the cardinal planes should be
addressed. Further work needs to focus on the possible
mechanisms behind postural balance deficiencies in LR.

Conclusion

Patients with LDH associated with radiculopathy
demonstrated some significant differences from
control participants in terms of time to complete a
test, sequencing, and overall static and dynamic balance
control.
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