Skip to main content

Influence of sensory integration training on postural instability in elderly with parkinsonian disease following stereotactic surgery

Abstract

Background

Impaired posture is strongly associated with function particularly in patients with parkinsonian disease (PD).

Objective

To detect the effect of sensory integration training on postural instability in elderly PD following stereotactic surgery.

Patients and methods

A total of 27 patients with idiopathic PD were assessed before and after 12 weeks by the postural stability test. They were randomly assigned into three groups: group I (sensory integration training), group II (stereotactic surgery), and group III (sensory integration training after 10 days postoperatively).

Results

There was significant improvement in group III more than in groups I and II. The percent of improvement of group III was higher concerning the overall stability index (48.86%, t=7.088 and P=0.0001(, anterior/posterior index (74.61%, t=21.240 and P=0.0001), and medial/lateral index (55.81%, t=14.014 and P=0.0001). Group III was superior to groups I and II (P=0.026 and 0.001, 0.040 and 0.0001, and 0.049 and 0.0001).

Conclusion

Sensory integration training improved postural stability in elderly with PD following stereotactic surgery.

References

  1. 1

    Timothy R, James T, Robert W, Kathleen A. Parkinson’s disease. Subcell Biochem 2012; 65:389–455.

    Article  Google Scholar 

  2. 2

    De Lau L, Breteler M. Epidemiology of Parkinson’s disease. Lancet Neurol 2006; 5:525–535.

    Article  Google Scholar 

  3. 3

    Sharififar R, Coronado S, Romero H, Azari B, Thigpen M. The effects of whole body vibration on mobility and balance in Parkinson disease: a systematic review. Iran J Med Sci 2014; 39:318–326.

    PubMed  PubMed Central  Google Scholar 

  4. 4

    Moro E, Rodriguez O, Krack P. Long-term outcomes of surgical therapies for Parkinson’s disease. Mov Disord 2012; 27:1718–1728.

    Article  Google Scholar 

  5. 5

    Paul S, Sherrington C, Canning C, Fung V, Close J, Lord S. The relative contribution of physical and cognitive fall risk factors in people with Parkinson’s disease: a large prospective cohort study. Neurorehabil Neural Repair 2014; 28:282–290.

    Article  Google Scholar 

  6. 6

    Adrian W, Steven G, Thelekat V, Crispin J, Niall Q. Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson’s disease. Lancet Neurol 2010; 9:581–591.

    Article  Google Scholar 

  7. 7

    Goetz C, Poewe W, Rascol O. Movement disorder society task force report on the Hoehn and Yar staging scale: status and recommendations. Mov Disord 2004; 19:1020–1028.

    Article  Google Scholar 

  8. 8

    Pangman V, Sloan J, Guse L. An examination of psychometric properties of the mini-mental status examination and the standardized mini-mental status examination: implications for clinical practice. Appl Nurs Res 2000; 13:209–213.

    CAS  Article  Google Scholar 

  9. 9

    Finn J. Biodex balance system assessment among subjects of disparate balancing abilities. Neur 2010; 75.

  10. 10

    Ramaker C, Marinus J, Stiggelbout A, Margarethe H, Bob J. Systematic evaluation of rating scales for impairment and disability in Parkinson’s disease. Mov Disord 2002; 17:867–876.

    Article  Google Scholar 

  11. 11

    Mark G, Carpentera S, Bastiaan R, Bloemb R. Experimental neurology. Available at: http://www.elsevier.com/locate/yexnr. DOI: https://doi.org/ 10.1212/WNL.0b013e3181f61329

  12. 12

    Jacob J, Crouse M, Joseph R, Phillips N, Marjan J, Ahmed A. Postural instability and falls in Parkinson’s. disease. Rev Neurosci 2016; 20:1–7.

    Google Scholar 

  13. 13

    Song N, Canning C, Sherrington C. The effects of an exercise program on fall risk factors in people with Parkinson’s disease: a randomized controlled trial. Mov Disord 2009; 25:1217–1225.

    Google Scholar 

  14. 14

    Adkin B, Fazakarley H, Ballinger K, Pickering T, McLellan J, Fitton S. A randomised controlled trial of a home based exercise programme to reduce the risk of falling among people with Parkinson’s disease. J Neurol Neurosurg Psychiatry 2010; 78:678–684.

    Google Scholar 

  15. 15

    Petzinger G. Enhancing neuroplasticity in the basal ganglia: the role of exercise in Parkinson’s disease. Mov Disord 2010; 25:141–145.

    Article  Google Scholar 

  16. 16

    Berchtold N, Castello N, Cotman C. Exercise and time-dependent benefits to learning and memory. Neuroscience 2010; 167:588–597.

    CAS  Article  Google Scholar 

  17. 17

    Petzinger G. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurol 2013; 12:716–726.

    Article  Google Scholar 

  18. 18

    Scalzo P, Kummer A, Cardoso F, Teixeira A. Serum levels of interleukin-6 are elevated in patients with Parkinson’s disease and correlate with physical performance. Neurosci Lett 2010; 468:56–58.

    CAS  Article  Google Scholar 

  19. 19

    Cadet P. Cyclic exercise induces anti-inflammatory signal molecule increases in the plasma of Parkinson’s patients. Int J Mol Med 2003; 12:485–492.

    CAS  PubMed  Google Scholar 

  20. 20

    Marxreiter F, Regensburger M, Winkler J. Adult neurogenesis in Parkinson’s disease. Cell Mol Life Sci 2013; 70:459–473.

    CAS  Article  Google Scholar 

  21. 21

    Van der Kolk N, King L. Effects of exercise on mobility in people with Parkinson’s disease. Mov Disord 2013; 28:1587–1596.

    Article  Google Scholar 

  22. 22

    Kurtais Y, Kutlay S, Tur B, Gok H, Akbostanci C. Does treadmill training improve lower-extremity tasks in Parkinson disease? A randomized controlled trial. Clin J Sport Med 2008; 18:289–291.

    Article  Google Scholar 

  23. 23

    McNeely M, Earhart G. Lack of short-term effectiveness of rotating treadmill training on turning in people with mild-to-moderate parkinson’s disease and healthy older adults: a randomized, controlled study. Parkinsons Dis 2012; 2012:623–630.

    Google Scholar 

  24. 24

    Cheng F. Factors influencing turning and its relationship with falls in individuals with Parkinson’s disease. PLoS One 2014; 9:63–72.

    Google Scholar 

  25. 25

    Lima L, Scianni A, Rodrigues-de-Paula F. Progressive resistance exercise improves strength and physical performance in people with mild to moderate Parkinson’s disease: a systematic review. J Physiother 2013; 59:7–13.

    Article  Google Scholar 

  26. 26

    Liao Y. Virtual reality-based training to improve obstacle-crossing performance and dynamic balance in patients with Parkinson’s disease. Neurorehabil Neural Repair 2014; 10:11–77.

    Google Scholar 

  27. 27

    Larissa C, Gabriela L, Tatiana S, Louise G, Elida R, Emilia M, Clecio de Oliveira G. Influence of treadmill gait training with additional load on motor function, postural instability and history of falls for individuals with Parkinson’s disease: a randomized clinical trial. J Neurosci Res 2017; 21:93–100.

    Google Scholar 

  28. 28

    Obeso JA, Olanow CW, Rodriguez-Oroz MC, Krack P, Kumar R, Lang AE. Deep-Brain Stimulation for Parkinson’s Disease Study Group. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 2001; 345:956–963.

    CAS  Article  Google Scholar 

  29. 29

    Chastan G, Westby J, Yelnik E, Bardinet XX, Agid M, Welter L. Effects of nigral stimulation on locomotion and postural stability in patients with Parkinson’s disease. Brain 2009; 132:172–184.

    CAS  Article  Google Scholar 

  30. 30

    Guehl D, Dehail P, Pdeseze M, Cuny E, Faux P, Tison F, Barat M. Evolution of postural stability after subthalamic nucleus stimulation in Parkinson’s disease: a combined clinical and posturometric study. Exp Brain Res 2006; 170:206–215.

    CAS  Article  Google Scholar 

  31. 31

    Patrick H, Mark S. Deep brain stimulation: a paradigm shifting approach to treat Parkinson’s disease. Front Neurosc 2016; 10:173.

    Google Scholar 

  32. 32

    Maaike B, Rianne A, Marten M, Patricia L, Hans D, Bastiaan R. Effects of stereotactic neurosurgery on postural instability and gait in Parkinson’s disease. Neurology 2004; 61:1711–1716.

    Google Scholar 

  33. 33

    Deborah R, Averell O, Joseph J, Sharon O, Krauss R, Grossman F. Postural control in Parkinson’s disease after unilateral posteroventral pallidotomy. Brain 2000; 123:2141–2149.

    Article  Google Scholar 

  34. 34

    George R, Nutt J, Burchiel K, Horak F. A meta-regression of the long-term effects of deep brain stimulation on balance and gait in PD. Neurology 2010; 75:1292–1299.

    Article  Google Scholar 

  35. 35

    Marsha E, Melnick P, Glenna A, Dowling D, Michael J, Aminoff M, et al. Advances in therapeutic options for gait and balance in Parkinson’s disease. US Neurol 2011; 7:100–108.

    Article  Google Scholar 

  36. 36

    Weaver F, Follett K, Stern M. Bilateral deep brain stimulation versus best medical therapy for patients with advanced Parkinson disease. JAMA 2009; 301:63–73.

    CAS  Article  Google Scholar 

  37. 37

    Lyoo C, Aalto S, Rinne J. Different cerebral cortical areas influence the effect of subthalamic nucleus stimulation on parkinsonian motor deficits and freezing of gait. Mov Disord 2007; 22:2176–2182.

    Article  Google Scholar 

  38. 38

    Rocchi L, Chiari L, Horak F. Effects of deep brain stimulation and levodopa on postural sway in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2002; 73:267–274.

    CAS  Article  Google Scholar 

  39. 39

    Shivitz N, Koop M, Fahimi J. Bilateral subthalamic nucleus deep brain stimulation improves certain aspects of postural control in Parkinson’s disease, whereas medication does not. Mov Disord 2006; 21:1088–1097.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Elshinnawy PhD.

Additional information

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elshinnawy, A., Wadee, A. & Tawfick, A. Influence of sensory integration training on postural instability in elderly with parkinsonian disease following stereotactic surgery. Bull Fac Phys Ther 24, 90–98 (2019). https://doi.org/10.4103/bfpt.bfpt_1_19

Download citation

Keywords

  • parkinsonian patients
  • sensory integration
  • stereotactic surgery